Friday, November 12, 2010

Proteins in Motion: World’s Largest Video Database of Proteins for the Pharmaceutical Industry Published

"Nowadays we design drugs as if the proteins against which they are to act were static and this goes a long way to explain failures in the development of new drug therapies because this is not a true scenario. With MoDEL this problem is solved because it offers the user from 10,000 to 100,000 photos per protein, and these confer movement to these structures and allow a more accurate design," says Orozco, head of the "Molecular modelling and bioinformatics" group at IRB Barcelona, director of the Life Sciences Programme of the Barcelona Supercomputing Center and full professor at the University of Barcelona. According to this researcher, several pharmaceutical companies are already using the MoDEL strategy to develop the first drugs against cancer and inflammatory diseases, which could become available this year.

Researchers Unlock a Secret of Bacteria's Immune System

The team led by Professor Sylvain Moineau of Université Laval's Department of Biochemistry, Microbiology, and Bioinformatics showed that this mechanism, called CRISPR/Cas, works by selecting foreign DNA segments and inserting them into very specific locations in a bacterium's genome. These segments then serve as a kind of immune factor in fighting off future invasions by cleaving incoming DNA.

The researchers demonstrated this mechanism using plasmids, DNA molecules that are regularly exchanged by bacteria. The plasmid used in the experiment, which contained a gene for antibiotic resistance, was inserted into bacteria used in making yogurt, Streptococcus thermophilus. Some of the bacteria integrated the segments of DNA from the resistance gene into their genome, and subsequent attempts to reinsert the plasmid into these bacteria failed. "These bacteria had simply been immunized against acquiring the resistance gene, commented Professor Moineau. This phenomenon could explain, among other things, why some bacteria develop antibiotic resistance while others don't."

The CRISPR/Cas immune system also protects bacteria from bacteriophages, a group of viruses that specifically target bacteria. This makes Professor Moineau's discovery particularly interesting for food and biotechnology sectors that use bacterial cultures, such as the yogurt, cheese, and probiotics industries. Bacterial culture contamination by bacteriophages is a serious concern with considerable financial implications for those industries.